

We say a network errs if the wire leaving it has a different value than the wire leaving the corresponding gate, G, in the noiseless circuit. Say the entire module errs if a majority of the wires leaving it differ from wire leaving the corresponding G in the noiseless circuit

Each network has error probability no more than 2ϵ. So entire module has error prob. $\leq 2^{2 k+1}(2 \epsilon)^{k+1}=4 \epsilon(8 \epsilon)^{k}$

Maj is a subcircuit that outputs the majority of its inputs. Each network requires $O(k)$ noiseless gates, so it can be built with $\mathrm{O}(\mathrm{k} \log \mathrm{k})$ noisy gates to ensure error probability less than 2 lepsilon. (See Part 1 in series)

Total gates in module $=O\left(k^{2} \log k\right)$
Total gates in entire MUX $=\sum_{k=0}^{r} 2^{r-k} O\left(k^{2} \log k\right)=O\left(2^{r}\right)$
So failure prob along any path is:
$\leq \sum_{k=0}^{r} 4 \epsilon(8 \epsilon)^{k} \leq 4 \epsilon /(1-8 \epsilon) \leq 6 \epsilon<1 / 2$
 (G):G), G G

